skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ahmadi, Soma"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Chemical reactions between carbon dioxide (CO) and amine have been extensively characterized, however, their influence on the dynamics of polyamines remains largely unexplored. In this work, we compare the dynamics of polyethylenimine (PEI) before and after CO absorption through broadband dielectric spectroscopy (BDS). The molecular processes of bulk PEI are very different from those of thin film PEI, highlighting an interesting interface and nano‐confinement effect. Detailed analyses show CO absorption slows down the PEI dynamics, which is consistent with an elevated glass transition temperature of PEI upon CO absorption from differential scanning calorimetry measurements. Furtherin situkinetic measurements demonstrate nonmonotonic changes in relaxation times or dielectric amplitudes of some relaxation processes during CO sorption or desorption, suggesting an intriguing interplay between CO chemisorption and the dynamics of PEI. These results demonstrate that BDS is a powerful platform to resolve the temporal dynamics changes of polyamines for CO capture. 
    more » « less